

Pemodelan Dispersi NO2 dari Aktivitas Transportasi Menggunakan Software AERMOD di Kawasan Kotagede

Modelling of NO₂ Dispersion from Transportation Activities Using AERMOD Software in Kotagede Area

Louisa Jessica Permatasari^{1*)}, Dewi Eviane², Nur Iswanto³, Agnes Dyah Novitasari Lestari⁴

¹Knowledge Integration Service (KIS) Group Sustainability², Jakarta, Indonesia ³Program Studi Magister Teknik Lingkungan, Fakultas Pascasarjana, Institut Teknologi Yogyakarta, Yogyakarta, Indonesia

⁴Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Papua, Papua Barat, Indonesia

*)Corresponding author: louisa9e@gmail.com

ABSTRAK Kondisi lalu lintas di suatu wilayah memberikan pengaruh dan *Article history:* dampak pada kualitas udara. Kotagede merupakan salah satu Received: 19 March 2025 bagian dari kawasan cagar budaya yang terletak di Kapanew on Kotagede, Kota Yogyakarta yang memiliki banyak bangunan Revised: 24 July 2025 berarsitektur tua dengan kepadatan transportasi yang cukup Accepted: 30 July 2025 tinggi. Tujuan penelitian ini untuk mengetahui nilai konsentrasi udara ambien NO2, mengetahui dispersi NO2, dan menyusun rekomendasi pengelolaan lingkungan untuk menanggulangi polusi udara. Metode penelitian yang digunakan adalah uji Kata kunci: sampling kualitas udara, menghitung jumlah kendaraan, **AERMOD** memodelkan sebaran NO2 menggunakan software American Dispersi NO₂ Meteorological Society (AMS) and US Environmental Protection Transportasi Agency (EPA) Regulatory Model (AERMOD), dan mengkaji Kotagede serta memberikan saran pengelolaan dalam menanggulagi polusi udara. Hasil sampling di lapangan menunjukkan bahwa titik A di salah satu bagian Pasar Kotagede melebihi baku mutu dan lebih tinggi dibanding yang lainnya. Titik D memiliki tingkat pencemaran terendah dibandingkan dengan titik-titik lainnya. Rekomendasi pengelolaan lingkungan untuk mengurangi konsentrasi NO2 ambien di wilayah Kotagede dilakukan dengan memperhatikan aspek lingkungan, kebijakan, dan teknis pengelolaan lingkungan. **ABSTRACT** Traffic conditions in an area have an influence and impact on air Keywords: quality. Kotagede is one part of the cultural heritage area located in **AERMOD** Kotagede Sub-district, Yogyakarta City which has many old Dispersion NO₂ Transportation architecture buildings with high transportation density. The purpose of Kotagede this study was to determine the value of ambient air concentration of NO₂, determine the dispersion of NO₂, and develop recommendations for environmental management to mitigate air pollution. The research method used was air quality test, calculating the number of vehicles, modelling the distribution of NO2 using American Meteorological

ZEIJ

ENVIRONMENTAL INSIGHT JOURNAL

e-ISSN 3090-6105

Volume 1, Number 2, Page 64 - 78, July 2025

Society (AMS) and U.S. Environmental Protection Agency (EPA) Regulatory Model (AERMOD) software, and reviewing and providing management suggestions in mitigating air pollution. Field sampling results showed that point A in one part of Kotagede Market exceeded the quality standard and was higher than the others. Point D had the lowest pollution level compared to the other points. Environmental management recommendations to reduce ambient NO2 concentrations in Kotagede were carried out by considering environmental aspects, policies, and technical environmental management.

PENDAHULUAN

Kapanewon Kotagede merupakan Kawasan Cagar Budaya yang terletak di sebelah tenggara Kota Yoyakarta. Pada zaman Kerajaan Mataram Islam, Kotagede merupakan Ibukota Kerajaan Mataram Islam, sehingga banyak memiliki bangunan berarsitektur tua, situs peninggalan sejarah, dan benda budaya. Kotagede juga merupakan sentra industri kerajinan perak yang dimulai dari abad XVI Masehi (Armiyati, 2014). Selain dikenal sebagai kawasan industri dan budaya, Kotagede juga dikenal sebagai pusat perdagangan.

Banyaknya kegiatan di Kawasan Kotagede mengakibatkan tingginya aktivitas di sektor transportasi. Hal ini dapat diketahui dari adanya kemacetan lalu lintas di beberapa titik. Sektor transportasi menyebabkan pencemaran udara yang cukup tinggi dibandingkan dengan aktivitas manusia yang lain (Darmayasa, 2013). Komponen pencemar udara dari sektor transportasi meliputi CO, NOx, HC, SOx, dan PM. Salah satu polutan dari kendaraan bermotor yang memiliki dampak yang sangat berbahaya terhadap kesehatan adalah NOx (Salatin et al., 2019). NOx mempunyai kontribusi penting dalam polusi troposfer terutama dalam pembentukan O3, hujan asam, dan aerosol particulate matter. Selain itu NOx yang cukup tinggi berakibat pada radiasi yang mendorong perubahan sistem iklim (Cui et al., 2021).

NOx merupakan senyawa gas yang terdapat di udara bebas yang dihasilkan dari proses pembakaran minyak bumi dan fosil lainnya pada suhu tinggi. NOx dihasilkan dari proses pembakaran dalam bentuk NO dan NO2. Kelompok senyawa NO dan NO2 merupakan polutan yang sangat berbahaya terhadap kesehatan. NO2 merupakan gas yang beracun dengan tingkat kelarutan dalam air rendah, namun lebih mudah larut dalam alkali, karbon disulfida, dan kloroform (Handayani et al., 2003). NO2 merupakan gas yang berwarna coklat (Handriyono & Syafei, 2015), sedangkan NO merupakan gas yang tidak berwarna dan tidak berbau. Salah satu sumber utama NOx adalah proses pembakaran yang terjadi dalam *internal combustion engine* kendaraan bermotor (Darmayasa, 2013). Gas NO dan NO2 tebentuk karena reaksi pembakaran (oksidasi) antara unsur nitrogen yang terdapat dalam bahan bakar dengan oksigen yang terdapat dalam udara pembakaran pada suhu yang relatif tinggi (William & Boedisantoso, 2015).

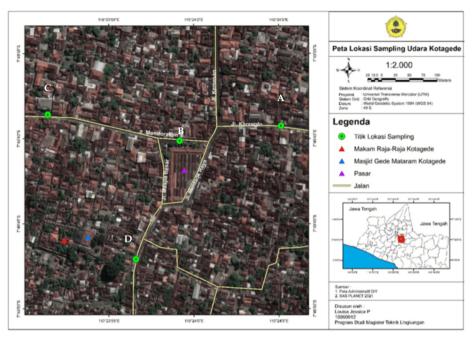
Konsentrasi NOx di daerah perkotaan 10-100 kali lebih tinggi dibandingkan dengan daerah pedesaan. Konsentrasi NOx di udara dalam suatu kota bervariasi tergantung pada berbagai faktor seperti, intensitas sinar matahari, fenomena meteorologi dan aktivitas kendaraan. Konsentrasi NOx sebelum matahari terbit relatif

Volume 1, Number 2, Page 64 - 78, July 2025

rendah dan stabil, kemudian meningkat dengan cepat seiring dengan peningkatnya aktivitas manusia di pagi hari yang ditandai dengan meningkatnya aktivitas lalu lintas. Peningkatan sinar matahari akan menyebabkan meningkatnya sinar ultraviolet seiring dengan kenaikan kadar O₃ sehingga konsentrasi NO₂ akan memuncak. (Noviani et al., 2013). Hasil penelitian menunjukkan pada saat kondisi atmosfer stabil, konsentrasi NO₂ mencapai konsentrasi tertinggi pada malam hari pukul 7 hingga 10. Seiring meningkatnya kestabilan atmosfer maka konsentrasi maksimum di permukaan semakin jauh dari sumber pencermar (Natsir et al., 2018).

American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) merupakan suatu sistem pemodelan Gaussian yang dikembangkan oleh US EPA yang berupa model gabungan dispersi udara berbasis struktur tubulensi *Planetary Boundary Level* (PBL) dan profil elevasi muka tanah (Nugroho & Sofyan, 2010). AERMOD dapat digunakan untuk memodelkan dispersi emisi dengan jangkauan wilayah yang jaraknya kurang dari 50 km. Pemodelan dengan menggunakan AERMOD memerlukan informasi terkait permukaan wilayah seperti kontur, kelembaban. AERMOD membutuhkan data yang komprehensif tentang kondisi atmosfer guna menentukan tinggi pencampuran dan untuk membangun penetrasi sebagian *plume* di sepanjang bagian atas ketinggian pencampuran. Model AERMOD disusun oleh model utama (AERMOD), prosesor meteorologi (AERMET), dan geomorfologi (AERMAP). AERMET berfungsi menyediakan data meteorologi, sedangkan AERMAP berfungsi menyediakan data topografi dan data *grid* berdasarkan data DEM (Jayadipraja et al., 2016). AERMOD telah digunakan untuk memodelkan dispersi NOx.

Pengurangan pencemaran udara tentunya sangat penting dalam upaya memperbaiki kondisi lingkungan khususnya Kotagede sebagai daerah pariwisata, dan pusat kegiatan ekonomi. Kepadatan lalu lintas dapat memiliki dampak yang buruk terhadap pengelolaan kawasan wisata. Kendala biaya yang tinggi, waktu yang lama, dan lokasi titik pantau merupakan keterbatasan dalam menggambarkan kualitas udara skala perkotaan. Namun demikian pemodelan merupakan salah satu cara yang efektif untuk memperkirakan kualitas udara (Handriyono et al., 2015). AERMOD dapat digunakan untuk memodelkan dispersi polutan udara di Kotagede sehingga dapat digunakan untuk pertimbangan dalam pengambilan kebijakan lingkungan.


BAHAN DAN METODE

Lokasi Penelitian

Lokasi penelitian berada di sekitar pusat keramaian Kotagede, Yogyakarta. Pengambilan sampel dilakukan di 4 (empat) titik yaitu titik A di Jl. Karanglo, titik B berada di Jl. Mondorakan di depan Pasar Kotagede, titik C berada di Jl. Mondorakan di depan SMA Muhammadiyah 4, serta titik control D berada di Jl. Masjid Besar di depan Makam Raja-raja Mataram selama 2 (dua) hari yaitu pada hari kerja Senin dan Selasa. Pemilihan lokasi penelitian pada titik A, B, C, dan D dilakukan secara sengaja dengan pertimbangan bahwa jalan-jalan tersebut merupakan akses jalan menuju Pasar Kotagede yang berfungsi sebagai pusat kegiatan ekonomi dan jalur-jalan menuju tempat-tempat wisata, sehingga merupakan jalur lalu lintas yang cukup padat.

Pemilihan lokasi ini ditetapkan berdasarkan survei pendahuluan. Gambar 1 menunjukkan gambar lokasi penelitian.

Gambar 1. Lokasi Penelitian Kawasan Kotagede.

Bahan dan Alat

Bahan kimia yang digunakan berstandar laboratorium antara lain padatan asam sulfanilat (H2NC6H4SO3H), air bebas mineral, natrium nitrit (NaNO2), larutan induk N-(1-naftil)-etilendiamin dihidroklorida (NEDA, C12H16C12N2), aseton (C3H6O), larutan penjerap Griess-Saltzman, larutan induk nitrit (NO2) 2000 µg/ml. Alat yang digunakan adalah midgied mpinger, pompa hisap, spektrofotometer, flow meter, pipet ukur 5 ml, pipet gondok, karet hisap, labu takar 25 & 50, anemometer, termometer, kamera. Serta program computer yang digunakan adalah Google Earth, ArcGIS, Software AERMOD, Software WRPLOT, dan Ms. Excel.

Metode

- 1. Pengukuran konsentrasi NO2 ambien dilakukan pada titik-titik sampel dengan menggunakan larutan penjerap Griess Saltzman NO2 dan larutan pengoksida, KMnO₄ yang dihubungkan dengan pomps penghisap dengan kecepatan hisap 0,5 ml/menit selama 60 menit. Hasil pengukuran dibaca dengan spektrofotometer untuk mengetahui konsentrasi NO2 ambien di titik-titik sampel.
- 2. Pemodelan dispersi dengan AERMOD dilakukan dengan menghitung jumlah dan jenis kendaraan bermotor yang lewat di titik-titik sampel, memasukkandata hasil uji laboratorum kualitas udara NO2, data kecepatan dan arah angin, suhu, dan lebar jalan. Sedangkan pembacaan data windrose menggunakan software WRPLOT.

HASIL DAN PEMBAHASAN

Kondisi Lalu lintas dan Kandungan NO2

Salah satu wilayah kecamatan Kota Yogyakarta yang memiliki lalu lintas yang padat adalah Kapanewon Kotagede. Menurut hasil pengamatan lalu lintas di Kotagede berdasarkan Google maps ditunjukkan pada Gambar 2 dan pengamatan lalu lintas langsung, Kotagede sering mengalami kemacetan pada daerah pasar Kotagede.

Gambar 2. Tingkat Kemacetan Lalu-lintas di Kotagede berdasarkan Google map

Pada Gambar 2, terlihat jalan-jalan di sekitar pasar Kotagede berwana merah pada google map sebagai indikasi terjadi kemacetan parah pada daerah-daerah itu. Pasar Kotagede memiliki letak yang strategis karena berada di pusat Kotagede. Berdasarkan hasil pengamatan, diketahui bahwa Kotagede memiliki beberapa faktor penyebab terjadinya kemacetan antara lain;

- 1. Jalan yang sempit dengan lebar ruas jalan ± 5 meter;
- 2. Kurangnya lahan parkir, sehingga menyebabkan parkir di pinggir ruas jalan;
- 3. Kawasan padat penduduk dengan jumlah penduduk pada tahun 2020 yaitu 33.280 orang dan laju pertumbuhan penduduk per tahun 2010-2020 sebesar 0,64%;
- 4. Pasar Kotagede bukan merupakan daerah yang dilewati jalur transportasi umum;
- 5. Pasar Kotagede merupakan pusat kegiatan ekonomi, sosial, dan dekat dengan wisata kebudayaan yang ada yaitu Masjid Gedhe dan Makam Raja-Raja.

Moda transportasi penyumbang kemacetan terbesar menurut hasil penelitian adalah sepeda motor dan mobil. Titik A, B, dan C kendaraan yang paling banyak melintas adalah sepeda motor, mobil, pick up, dan truk, sedangkan pada titik D kendaraan yang paling banyak adalah sepeda motor, mobil, truk, dan tidak ada pick up. Sepeda motor merupakan urutan pertama jumlah kendaraan terbanyak yang lewat dibandingkan dengan jumlah kendaraan lainnya (Tabel 1).

Tabel 1. Jumlah Kendaraan Hari Pertama dan Hari Kedua

Jenis	Hari Pertama				Hari Kedua			
Kendaraan	Titik A	Titik B	Titik C	Titik A	Titik B	Titik C	Titik D	
Motor	2905	1392	1682	2935	1678	1581	640	
Mobil	168	49	56	164	53	59	18	
Truk	15	6	2	16	4	5	3	
Pick up	42	7	13	44	15	21	0	
Becak Motor	0	1	0	1	1	0	2	
Roda 3/Tozza	10	1	3	6	4	4	1	

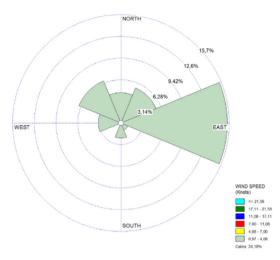
Jenis	Hari Pertama			Hari Kedua			
Kendaraan	Titik A	Titik B	Titik C	Titik A	Titik B	Titik C	Titik D
Jumlah	3140	1456	1756	3166	1755	1670	664
Total		6352		7255			

Titik A menunjukkan jalan yang paling banyak dilewati oleh kendaraan dibandingkan titik lain, namun pada titik A tidak terjadi kemacetan karena jalan ini relatif lebih lebar dibandingkan dengan jalan lain. Titik B berada tepat di depan/utara pasar dan sering terjadi kemacetan yang diakibatkan karena jalah tersebut yang diapit oleh pedagang kaki lima pada kanan dan kiri jalan pasara Kotagede, titik C banyak kendaraan yang melintas tetapi cenderung lebih longgar dibandingkan titik B sehingga jarang terjadi kemacetan. Baik di titik A dan B, bisnis di sepanjang jalan ini relatif tidak padat dan beberapa toko/bisnis telah mempunyai tempat parkir sendiri sehingga pengunjung tidak memarkir kendaraannya di pinggir jalan yang dapat menyebabkan kemacetan. Titik D jumlah kendaraan yang lewat lebih sedikit dibanding dengan titiktitik yang lain.

Hari pertama, hari Senin, kondisi cuaca cerah-berawan untuk 3 (tiga) titik lokasi, dan hari kedua, hari Selasa, kondisi cuaca menunjukkan cerah-berawan. Berdasarkan hasil pengambilan sampling pada 4 (empat) titik lokasi sampling di Kotagede, mendapatkan hasil pengukuran NO2 Ambien pada Tabel 2.

Tabel 2. Hasil Pengukuran NO₂ Ambien Kotagede (µg/m³)

Titik Sample	Koordinat	Hari ke-1	Hari ke-2	Baku Mutu*
A	(S 07° 49' 39.25", E110° 24' 05.21")	349,2	402,1	_
В	(S 07° 49' 40.13", E110° 23' 59.24")	173,0	229,2	200
C	(S 07° 49' 38.59", E110° 23' 51.48")	121,3	360,1	200
D	(S 07° 49' 47.09", E110° 23' 56.66")	NA	119,2	


Keterangan: *= PP nomor 22 tahun 2021; NA = tidak diukur

Hasil sampling di lapangan menunjukkan bahwa pencemaran titik A melebihi baku mutu dan lebih tinggi dibanding titik-titik yang lainnya. Titik A, B dan C, pada hari kedua, melebihi baku mutu tetapi di hari pertama titik B dan C tidak melebihi baku mutu, ini dikarenakan jumlah kendaraan titik B dan C pada hari kedua, terutama motor dan mobil, lebih banyak dibandingkan hari pertama. Titik D memiliki tingkat pencemaran terendah dibandingkan dengan titik-titik lainnya, ini juga disebabkan karena jumlah kendaraan pada titik D lebih sedikit dibanding dengan yang lainnya.

Arah Angin

Persebaran konsentrasi NO2 ambien sangat dipengaruhi oleh arah dan kecepatan angin. Pada kecepatan angin yang tinggi maka konsentrasi akan menyebar dengan luas sehingga konsentrasi pencemaran menjadi menurun karena ada proses dilusi pada daerah-daerah yang menjauh dari sumber emisi, dan begitu sebaliknya. Arah penyebaran pencemar emisi akan dipengaruhi dari kondisi arah angin yang membawa polutan tersebut (Riyanti et al., 2018). Pengukuran kecepatan dan arah angin digambarkan di dalam Gambar 3.

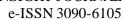
e-ISSN 3090-6105 Volume 1, Number 2, Page 64 - 78, July 2025

Gambar 3. Arah Angin Kotagede

Gambar 3 menunjukkan, arah angin di Kotagede pada saat penelitian sebagian besar berasal dari timur, sehingga konsentrasi pencemaran, termasuk NO₂, akan menyebar ke arah barat dari tempat kemacetan sebagai sumber pencemar. Kecepatan angin rata-rata dari masing-masing titik seperti disajikan di dalam Tabel 4.

Tabel 4. Kecepatan Angin pada Titik-Titik Pengamatan (knot)

Titik Pengamatan	Hari 1	Hari 2
A	0,40	0,46
В	0,78	1,08
С	1,50	0,85
D	NA	0,46

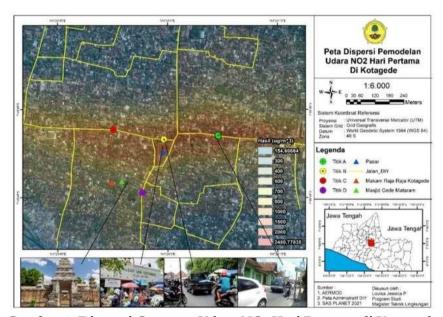

Sebaran kecepatan angin selama waktu penelitian adalah 0,40 knot hingga 1,50 knot dimana rentang ini masih termasuk ke dalam kecepatan angin yang paling rendah berdasarkan klasifikasi kecepatan angin *windrose* (Gambar 3).

Kombinasi data kuantitatif hasil pengukuran di lapangan selama dua hari disajikan di dalam Tabel 5.

Tabel 5. Ringkasan Data Kuantitatif Hasil Penelitian Selama Dua Hari

	Hari Pertama			Hari Kedua			
Titik Pengamatan	Jumlah Kendaraan (unit)	NO ₂ (μg/m ³)	Kecepatan Angin (knot)	Jumlah Kendaraan (unit)	NO ₂ (μg/m ³)	Kecepatan Angin (knot)	
A	3140	349,2	0,40	3166	402,1	0,46	
В	1456	173,0	0,78	1755	229,2	1,08	
C	1756	121,3	1,50	1670	360,1	0,85	
D	NA	NA	NA	664	119,2	0,46	

Hari pertama titik A menunjukkan kecepatan angin terendah yaitu 0,40 knot namun jumlah kendaraan tertinggi, 3140 unit, dibandingkan dengan titik-titik pengamatan lainnya. Karena angin dengan kecepatan rendah tidak cukup signifikan



menyebar atau mendispersi cemaran maka adalah wajar jika tingkat pencemaran di titik A yang tertinggi yaitu 349,2 NO₂ µg/m³.

Titik B dengan kecepatan angin yang masih relatif rendah, 0,78 knot, walaupun jumlah kendaraan lebih rendah daripada titik C yaitu 1456 unit dan 1756 unit, namun mempunyai tingkat cemaran yang lebih tinggi daripada titik C, dimana masingmasing adalah 173,0 µg/m³ dan 121,3 µg/m³. Faktor kontribusi cemaran dari titik A mungkin terjadi karena arah angin dari timur sementara posisi titik B berada di sebelah timur titik A yang kebetulan mempunyai tingkat cemaran paling tinggi di hari pertama.

Titik C mempunyai tingkat cemaran terendah yaitu 121,3 µg/m³ karena kecepatan angin tertinggi terjadi di titik ini yaitu sebesar 1,50 knot dengan arah angin ke barat yang membawa dengan cepat sebaran cemaran di titik ini.

Pola dispersi plume cemaran NO2 pada hari pertama yang dibuat dengan menggunakan software AERMOD dapat dilihat di dalam Gambar 4.

Gambar 4. Dispersi Cemaran Udara NO2 Hari Pertama di Kotagede

Pola dispersi NO₂ di dalam Gambar 4 memperjelas diskripsi hasil pembacaan dari hasil pengukuran NO2 di titik – titik A, B, dan C. Pada titik A, rona coklat gelap dapat dilihat dengan jelas dan berangsung memudar ke arah barat atau ke arah titik B dan titik C. Hal ini menjelaskan bagaimana kecepatan angin yang rendah belum berhasil secara nyata mendispersi NO2 ke arah barat.

Dari Tabel 5 dapat dilihat, kecepatan angin pada hari kedua berfluktuatif di masing-masing titik pengamatan dari 0,46 knot sampai 1,08 knot. Fenomena hari pertama pengukuran pada titik A, B dan C kembali berulang. Pada titik A dimana dengan kecepatan angin yang paling rendah yaitu sebesar 0,46 knot belum berhasil mendispersi cemaran NO2 sehingga karena pada titik A mempunyai jumah unit kendaraan paling tinggi maka memiliki tingkat cemaran NO2 yang paling tinggi pula, yaitu 402,1 µg/m³, dua kali lebih besar dari pada NAB yang telah ditentukan oleh pemerintah melalui PP nomor 22 tahun 2021.

Volume 1, Number 2, Page 64 - 78, July 2025

Pada titik B dan C, fenomena hari pertama juga terjadi dimana walaupun pada titik B jumlah kendaraan lebih tinggi daripada titik C namun tingkat cemarannya lebih rendah daripada titik C. Hal ini diduga karena kecepatan angin di titik B relatif lebih tinggi daripada titik-titik pengamatan lainnya sehingga walaupun termasuk kelas kecepatan angin rendah namun berhasil mendispersi dan mengakumulasi cemaran NO2 dari titik B ke titik C yang posisinya berada di sebelah barat.

Titik C menerima cemaran NO_2 dari titik B dan dengan kecepatan angin yang relatif rendah, 0,85 knot, belum berhasil mendispersi cemaran dan bahkan berkesan mengakumulasi cemaran di titik ini sehingga walaupun jumlah kendaraannya lebih rendah daripada titik B, namun tingkat cemarannya lebih tinggi, yaitu 229,1 μ g/m³ dan 360,1 μ g/m³.

Titik D mengkonfirmasi hubungan antara jumlah kendaraan dan tingkat cemaran dimana dengan jumlah kendaraan yang rendah maka tingkat cemarannya juga rendah yaitu 664 unit kendaraan dan 119,2 μg/m³. Titik D adalah titik dengan jumlah kendaraan terendah dan cemaran NO₂ terendah pula.

Strategi Reduksi Dampak Emisi

Pencemaran udara mempengaruhi kesejahteraaan manusia, perilaku manusia, harapan hidup, produktivitas bekerja, dan prestasi akademik (Chen & Li, 2020). Dalam mereduksi dampak pencemaran yang ada diperlukan suatu strategi untuk mengurangi pencemaran. Strategi yang dapat dilakukan di wilayah Kotagede antara lain menggunakan aspek lingkungan, aspek kelembagaan, dan aspek teknis.

1. Aspek Lingkungan

Aspek lingkungan yang dapat dilakukan dalam strategi pengendalian pencemaran udara adalah pemanfaatan secara maksimal potensi ruang terbuka hijau (RTH) yang ada pada wilayah tersebut dengan konsep green building. Green building menjadi salah satu upaya mitigasi dampak terhadap lingkungan, masyarakat, dan ekonomi (Zuo & Zhao, 2014). Pengertian green building terdapat perbedaan di Indonesia dan mancanegara. Green building di Indonesia memiliki arti bangunan ramah lingkungan yang harus dapat mengurangi dampak terhadap lingkungan, sedangkan konsep green building US Environmental Protection Agency adalah perencanaan dan perancangan bangunan melalui sebuah proses yang memperhatikan lingkungan dan menggunakan sumber daya secara efisien pada seluruh siklus hidup bangunan. Konsep ini mengembangkan metode perencanaan yang sebelumnya mempertimbangkan aspek ekolomi, utilitas, keandalan, dan kenyamanan (Hidayat, 2017). Menurut Ding et al (2018), Cina juga memiliki definisi green building merupakan bangunan yang dapat menghemat sumber daya, melindungi lingkungan, dan mengurangi polusi secara maksimal di seluruh siklus hidup untuk menyediakan ruang penggunaan yang sehat dan efisien bagi manusia yang selaras dengan alam.

Rekomendasi aspek lingkungan bertujuan untuk memelihara kehijauan kota dan meningkatkan kualitas lingkungan hidup khususnya kualitas udara ambien. Berdasarkan Peraturan Menteri Lingkungan Hidup dan Kehutanan nomor 08 tahun 2010 tentang Kriteria dan Sertifikasi Bangunan Ramah Lingkungan, bangunan dapat dikategorikan sebagai bangunan ramah lingkungan (*green building*) apabila memenuhi kriteria: 1) Menggunakan material bangunan yang ramah lingkungan; 2) Terdapat

fasilitas, sarana, dan prasarana untuk konservasi sumber daya air dalam bangunan gedung; 3) Terdapat fasilitas, sarana, dan prasarana konservasi dan diversifikasi energi; 4) Menggunakan bahan yang bukan bahan perusak ozon dalam bangunan gedung; 5) Terdapat fasilitas, sarana, dan prasarana pengelolaan air limbah domestik pada bangunan gedung; 6) Terdapat fasilitas pemilahan sampah; 7) Memperhatikan aspek kesehatan bagi penghuni bangunan; 8) Terdapat fasilitas, sarana, dan prasarana pengelolaan tapak berkelanjutan; 9) Terdapat fasilitas, sarana, dan prasarana untuk mengantisipasi bencana.

Pengembangan konsep green building di kawasan lahan terbatas dan padat penduduk seperti Kotagede masih dapat dikembangkan dan menjadi salah satu solusi yang tepat pada daerah tersebut. Penerapan green building yang dapat dilakukan dengan konsep penghijauan sistem vertical garden, roof garden, terrace garden atau green wall. Secara umum, kawasan Kotagede sudah ada yang menerapkan konsep green building tetapi belum keseluruhan. Gambar 7 menunjukkan kondisi kawasan Kotagede.

2. Aspek Kebijakan

Penerapan pengelolaan lingkungan perlu adanya sebuah evaluasi dan tingkat implementasi kebijakan yang mendukung upaya pengurangan polusi udara. Setelah adanya evaluasi perlu dilakukan pada tahap strategi dari implementasi kebijakan yang akan dilaksanakan (Chiesa et al., 2014). Kebijakan yang dapat diusulkan dapat dibedakan menjadi empat, antara lain; Dukungan kepada transportasi publik, mobilitas pribadi, pembatasan umur kendaraan, dan penggalakan uji emisi kendaraan.

Transportasi publik berkelanjutan, dimana perlu dilakukan peninjauan kembali mengenai kondisi transportasi publik yang tersedia. Menurut Nurkukuh & Kurniawati (2021) masyarakat kota Yogyakarta lebih memilih transportasi online dibanding dengan transportasi publik lainnya. Ini menunjukkan bahwa kurangnya minat pada transportasi publik, selain itu pengembangan dan perhatian terhadap moda transportasi dengan penambahan jenis transportasi dalam kota, seperti penambahan angkutan umum, dan dukungan pada transportasi umum konvensional seperti becak kaki, dan delman.

Gambar 7. Kondisi Kawasan Kotagede

e-ISSN 3090-6105 Volume 1, Number 2, Page 64 - 78, July 2025

Mobilitas pribadi dapat dilaksanakan dengan adanya pembatasan moda kendaraan pribadi pada akhir pekan, pembinaan dan dukungan bagi pengguna sepeda, dan pembatasan kendaraan diesel tanpa DPF (Chiesa et al., 2014).

- b. Pembatasan umur kendaraan merupakan salah satu kebijakan yang dapat mengurangi polusi udara. Menurut (Tezel-Oguz et al., 2020) pada tahun 2018 Madrid mengadakan pembatasan umur dan jenis bahan bakar kendaraan bertenaga gas sebelum tahun 2000, kendaraan diesel sebelum tahun 2006 dilakukan pembatasan, serta mobil bertenaga diesel tidak diizinkan memasuki pusat kota pada tahun 2020. Pembatasan ini merupakan salah satu bentuk skenario pengurangan polusi udara.
- c. Penggalakan uji emisi kendaraan juga merupakan salah satu alternatif kebijakan untuk mengurangi pencemaran udara (Arben, 2021). Langkah penggalakan uji emisi dapat digunakan menjadi salah satu syarat perpanjangan STNK (Surat Tanda Nomor Kendaraan Bermotor). Pelaksanaan uji emisi dapat bekerja sama dengan beberapa bengkel terkait yang ada di Kota Yogyakarta dan sekitarnya untuk meningkatkan akses yang tidak jauh. Pengurangan emisi akan menjadi lebih efektif dengan adanya pengendalian awal emisi dari kendaraan bermotor.

3. Aspek Teknis

Transportasi yang direncanakan dengan baik dengan memperhatikan aspek lingkungan, akan menjadi solusi dari masalah lalu lintas (Gorahe, 2015). Cara untuk memecahkan masalah lalu lintas dengan membuat skenario manajemen lalu lintas. Beberapa hal yang dapat dilakukan adalah dengan menerapkan alternatif jalur lain, pembatasan waktu suatu jalan, kebijakan ganjil-genap, dan manajemen lokasi parkir.

- a. Alternatif jalan lain dapat dilakukan dengan pembangunan jalan lain seperti jalan lingkar yang dapat mengurangi kepadatan jalan. Penggunaan jalan alternatif ini dapat mengurangi estimasi jumlah kendaraan yang melewati jalan utama (Tezel-Oguz et al., 2020). Alternatif jalan yang dapat mengurangi kemacetan di wilayah Kotagede dapat dilakukan dengan memaksimalkan Jl. Kemasan dan Jl. Nyi Pembayun sebagai jalan lingkar jika jalan utama (Jl. Karanglo-Jl. Mondorakan) terjadi kemacetan.
- b. Pemberian batasan waktu suatu jalan untuk dilewati kendaraan tertentu merupakan salah satu cara yang dapat dilakukan untuk mengurangi kepadatan lalu lintas. Kendaraan yang akan melewati dapat ditentukan berdasarkan jenis kendaraan atau kendaraan yang dapat membuat kemacetan dijalan yang relatif kecil. Pada waktu yang telah ditentukan kendaraan tersebut dapat melewati jalan tersebut. Upaya pengendalian lalu lintas pada suatu jalan adalah dengan pemberian batasan penggunaan kendaraan pribadi pada akhir pekan. Menurut (Zhang et al., 2018) pembatasan ini dapat mengurangi polusi udara dan emisi GRK dari lalu lintas. Pelarangan mobil pribadi memasuki pusat kota juga dilakukan oleh lima belas kota besar di seluruh dunia (Tezel-Oguz et al., 2020).
- c. Pemberlakuan batasan lalu lintas berdasarkan kelompok digit terakhir plat nomor kendaraan pribadi merupakan alternatif yang dapat digunakan untuk mengurangi kemacetan. Menurut (Zhang et al., 2018) daerah perkotaan Beijing terdapat pembatasan lalu lintas kendaraan pada pukul 07.00 sampai dengan 20.00 di suatu jalan berdasarkan pengelompokkan digit terakhit plat nomor

e-ISSN 3090-6105 Volume 1, Number 2, Page 64 - 78, July 2025

- terakhir pada hari-hari tertentu. Indonesia juga telah menerapkan sistem ini di DKI Jakarta yang dikenal dengan sistem ganjil genap. Sistem ini diharapkan dapat mengurangi potensi kemacetan yang tinggi, khususnya di wilayah perkotaan dan tempat wisata.
- d. Manajemen lokasi parkir merupakan salah satu cara untuk mengurangi kemacetan. Kotagede yang memiiki lalu lintas yang cukup padat kurang memiliki fasilitas tempat parkir yang memadahi, sehingga sering terjadi parkir di jalan utama yang dapat menambah potensi kemacetan. Pada beberapa lokasi daerah wisata di Indonesia, terdapat beberapa daerah dengan sistem biaya parkir berjalan. Kotagede yang juga merupakan salah satu tempat wisata sebaiknya dapat mengadopsi kebijakan biaya parkir berjalan untuk mengurangi kemacetan.

SIMPULAN

Konsentrasi NO² ambien di Kotagede menunjukkan bahwa terdapat pencemaran di beberapa titik lokasi sampling. Hasil sampling di lapangan menunjukkan bahwa pencemaran titik A melebihi baku mutu dan lebih tinggi dibanding yang lainnya. Titik D memiliki tingkat pencemaran terendah dibandingkan dengan titik-titik lainnya. Dispersi polusi udara NO² di Kotagede dimodelkan menggunakan software AERMOD dengan radius 1 Km. Konsentrasi maksimum berada di lokasi yang merupakan padat lalu lintas di daerah pusat pasar dan simpang-simpang lalu lintas. Rekomendasi pengelolaan lingkungan untuk menanggulangi NO² ambien di Kotagede dilakukan dengan memperhatikan aspek lingkungan, kebijakan, dan teknis pengelolaan lingkungan di wilayah Kotagede

UCAPAN TERIMA KASIH

Penelitian ini didukung oleh hibah penelitian dari Institut Teknologi Yogyakarta 2022. Kami sangat berterima kasih atas dukungan finansial yang diberikan.

DAFTAR PUSTAKA

- Arben. (2021). Kewajiban Uji Berkala Kendaraan Bus Di Dinas Perhubungan Kabupaten Kampar. *Jurnal Hukum Respublica*, 20(2), 1–17. https://Doi.Org/10.31849/Respublica.V20i2.7228
- Armiyati, L. (2014). Industri Perak Kotagede Yogyakarta Melawan Badai Krisis. *Jurnal Sejarah Dan Budaya*, 8(2), 165–175.
- Boningari, T., & Smirniotis, P. G. (2016). Impact Of Nitrogen Oxides On The Environment And Human Health: Mn-Based Materials For The Nox Abatement. *Current Opinion In Chemical Engineering*, 13(X), 133–141. https://Doi.Org/10.1016/J.Coche.2016.09.004
- Chen, S., & Li, T. (2020). The Effect Of Air Pollution On Criminal Activities: Evidence From The Nox Budget Trading Program. *Regional Science And*

ENVIRONMENTAL INSIGHT JOURNAL e-ISSN 3090-6105

Volume 1, Number 2, Page 64 - 78, July 2025

UrbanEconomics,83(X).https://Doi.Org/10.1016/J.Regsciurbeco.2020.103528

- Chiesa, M., Perrone, M. G., Cusumano, N., Ferrero, L., Sangiorgi, G., Bolzacchini, E.s, Ballarin Denti, A. (2014). An Environmental, Economical And Socio-Political Analysis Of A Variety Of Urban Air-Pollution Reduction Policies For Primary PM10 And Nox: The Case Study Of The Province Of Milan (Northern Italy). *Environmental Science And Policy*, 44(X), 39–50. https://doi.org/10.1016/j.envsci.2014.07.012
- Cui, Y., Wang, L., Jiang, L., Liu, M., Wang, J., Shi, K., & Duan, X. (2021). Dynamic Spatial Analysis Of NO2 Pollution Over China: Satellite Observations And Spatial Convergence Models. *Atmospheric Pollution Research*, 12(3), 89–99. https://doi.org/10.1016/j.apr.2021.02.003
- Darmayasa, I. G. O. (2013). Dampak Nox Terhadap Lingkungan. *Jurnal Ilmiah Kurva Teknik*, 2(1), 98–107.
- Dinas Lingkungan Hidup Kota Yogyakarta. (2020). Laporan Analisa Hasil Pemantauan Kualitas Udara Tahun 2020. *Dinas Lingkungan Hidup Kota Yogyakarta*. https://Doi.Org/10.47655/Dialog.V44i1.470
- Ding, Z., Fan, Z., Tam, V. W. Y., Bian, Y., Li, S., & Illankoon, I. M. C. S. (2018). Green Building Evaluation System Implementation. *Building And Environment*, 133(February), 32–40. https://Doi.Org/10.1016/J.Buildenv.2018.02.012
- Gorahe, I. M. (2015). Pemodelan Hubungan Antara Arus Lalu Lintas Dan Polusi Udara (CO). *Jurnal Sipil Statik Vol.3*, 3(7), 484–491.
- Handayani, D., Yunus, F., & Wiyono, W. (2003). Pengaruh Inhalasi NO2 Terhadap Kesehatan Paru. *Cermin Dunia Kedokteran*, (2), 138.
- Handriyono, R. E., & Syafei, A. (2015). Pemodelan Dispersi NO2 Dari Sumber Garis Menggunakan Aplikasi Open Menggunakan Aplikasi Open Source R Berdasarkan Model Gauss.
- Hidayat, M. S. (2017). Perencanaan Lingkungan Dan Bangunan Berkelanjutan Di Indonesia: Tinjauan Dari Aspek Peraturan Perundang-Undangan. *Tata Loka*, 19, 15–28. https://Doi.Org/10.14710/Tataloka.19.1.15-28
- Huang, D., & Guo, H. (2019). Dispersion Modeling Of Odour, Gases, And Respirable Dust Using AERMOD For Poultry And Dairy Barns In The Canadian Prairies. *Science Of The Total Environment*, 690, 620–628. https://doi.org/10.1016/j.scitotenv.2019.07.010
- Jayadipraja, E., Daud, A., Assegaf, A., & Maming, M. (2016). The Application Of The AERMOD Model In The Environmental Health To Identify The Dispersion Area Of Total Suspended Particulate From Cement Industry Stacks. *International Journal* Of Research In Medical Sciences, (October 2020), 2044–2049.

ENVIRONMENTAL INSIGHT JOURNAL e-ISSN 3090-6105

Volume 1, Number 2, Page 64 - 78, July 2025

https://doi.org/10.18203/2320-6012.ijrms20161757

- Kementerian Lingkungan Hidup Dan Kehutanan. *Peraturan Menteri Negara Lingkungan Hidup Nomor 08 Tahun 2010.* (2010).
- Kementerian Lingkungan Hidup Dan Kehutanan. *Peraturan Menteri Negara Lingkungan Hidup Nomor* 12 *Tahun* 2010. (2010).
- Kementerian Pekerjaan Umum Dan Perumahan Rakyat Republik Indonesia. *Peraturan Menteri Pekerjaan Umum Nomor 5 Tahun 2008*. (2008).
- Natsir, T. A., Windrianto P, Y., Susetyaningsih, R., Setyanto, K., & Dewi, R. (2018). Simulasi Dampak Pencemaran Udara Karbon Monoksida Di Kota Yogyakarta Akibat Emisis Kendaraan Bermotor (Simulation Of Carbon Monoxide Pollution Effect In Yogyakarta City Caused By The Emission Of Motor Vehicles). *Jurnal Manusia Dan Lingkungan*, 24(1), 11. https://doi.org/10.22146/jml.23631
- Noviani, E., Istirokhatun, T., & Sudarno. (2013). Pengaruh Jumlah Kendaraan Dan Faktor Meteorologis (Suhu, Kelembaban, Kecepatan Angin) Terhadap Peningkatan Konsentrasi Gas Pencemar NO₂ (Nitrogen Dioksida) Pada Persimpangan Jalan Kota Semarang (Studi Kasus Jalan Karangrejo Raya, Sukun Raya, Dan Ngesrep. *Dipa Ipteks*, Vol. 1, Pp. 1–5.
- Nugroho, A. W., & Sofyan, A. (2010). Sistem Pemodelan Kualitas Udara Terintegrasi Dengan Menggunakan AERMOD, WRF-CHEM dan PYTHON. 2–4.
- Nurkukuh, D. K., & Kurniawati, A. I. (2021). Preferensi Masyarakat Dalam Pemilihan Moda Transportasi Publik Di Kota Yogyakarta. 6(2), 259–264.
- Pemerintah Kota Yogyakarta. Peraturan Daerah Kota Yogyakarta Nomor 2 Tahun 2021 Tentang Rencana Tata Ruang Wilayah Kota Yogyakarta Tahun 2021-2041. (2021).
- Pemerintah Provinsi Daerah Istimewa Yogyakarta. (2012). Peraturan Daerah Provinsi Daerah Istimewa Yogyakarta Nomor 6 Tahun 2012 Tentang Pelestarian Warisan Budaya Dan Cagar Budaya. Peraturan Daerah Provinsi Daerah Istimewa Yogyakarta Nomor 6 Tahun 2012 Tentang Pelestarian Warisan Budaya Dan Cagar Budaya.
- Peraturan Pemerintah. Peraturan Pemerintah Nomor 22 Tahun 2021 Tentang Pedoman Perlindungan Dan Pengelolaan Lingkungan Hidup. Sekretariat Negara Republik Indonesia (2021).
- Riyanti, A., Herawati, P., & Pajriani, N. H. (2018). Pengaruh Konsentrasi NO2 Udara Ambien Pada Daerah Padat Kendaraan Terhadap Konsentrasi NO2 Udara Dalam Ruang (Studi Kasus Di Kawasan Simpang Pulai Kota Jambi). *Jurnal Daur Lingkungan*, 1(2), 60. https://doi.org/10.33087/daurling.v1i2.12
- Salatin, A., Arif, C., & Rachmawati, N. D. (2019). Analisis Tingkat Risiko Paparan Nox Terhadap Pekerja Di Gardu Tol Akibat Volume Kendaraan Di Pintu Tol Jagorawi, Bogor. *Jurnal Teknik Sipil Dan Lingkungan*, 4(1), 49–58.

Volume 1, Number 2, Page 64 - 78, July 2025

e-ISSN 3090-6105

https://doi.org/10.29244/jsil.4.1.49-58

- Tezel-Oguz, M. N., Sari, D., Ozkurt, N., & Keskin, S. S. (2020). Application Of Reduction Scenarios On Traffic-Related Nox Emissions In Trabzon, Turkey. *Atmospheric* Pollution Research. (June), https://doi.org/10.1016/j.apr.2020.06.014
- Tiarani, V. L., Sutrisno, E., & Huboyo, H. S. (2016). Kajian Beban Emisi Pencemar Udara (TSP, NOx, SO2, HC, CO) Dan Gas Rumah Kaca (CO2, CH4, N2O) Sektor Transportasi Darat Kota Yogyakarta Dengan Metode Tier 1 Dan Tier 2. Jurnal Teknik Lingkungan, 5.
- William, Y., & Boedisantoso, R. (2015). Analisis Beban Emisi Udara Co Dan No 2 Akibat Sektor Transportasi Darat Di Kota Probolinggo Co And No 2 Emmissions Rate Analysis Due To Land Transportation Sector On Probolinggo City. Jurnal Purifikasi, 15(2), 88-107.
- Zhang, S., Niu, T., Wu, Y., Zhang, K. M., Wallington, T. J., Xie, Q., Xu, H. (2018). Fine-Grained Vehicle Emission Management Using Intelligent Transportation System Environmental Pollution, 241, 1027-1037. Data. https://doi.org/10.1016/j.envpol.2018.06.016
- Zou, B., Wilson, J. G., Zhan, F. B., & Zeng, Y. (2009). Spatially Differentiated And Source-Specific Population Exposure To Ambient Urban Air Pollution. 3981-3988. **Atmospheric** Environment, 43(26), https://doi.org/10.1016/j.atmosenv.2009.05.022
- Zuo, J., & Zhao, Z. (2014). Green Building Research Current Status And Future Agenda: A Review Why? How? How? What? Renewable And Sustainable Energy Reviews, 30, 271-281. https://doi.org/10.1016/j.rser.2013.10.021